Support Vector Machines The basics

Michael Claudius, Associate Professor, Roskilde

05.04.2020

Sjællands Erðvervsakademi

What is Support Vector Machines (SVM) ?

- A *powerful* versatile algorithm for both classification and regression
- Classification predictions are based on a so called margin a street
 - Classification with a largest margin, a high way
 - Training is based on minimizing number of instances inside margins
- Regression predictions are based on a so called margin street
 - Regression with smallest margin, a bikers lane
 - Training is based on minimizing number of instances outside margins
- So its predicting something; lets look at that !

Evaluation of SVM?

- Advantages
 - Very good for complex small/medium sized data sets
 - White box; knows in details how it works
 - Easy to use
 - Many forms: Linear, non-linear, with without kernel etc....
- Disadvantages
 - Slow prediction,
 - Complex, pipelining with scaling is needed
 - Greedy algorithm, (which must be stopped)
 - Slow for huge data sets
 - No probability outcome for classification

The Iris flower case

• Data set with 150 Iris pictures of 3 different species (50 each)

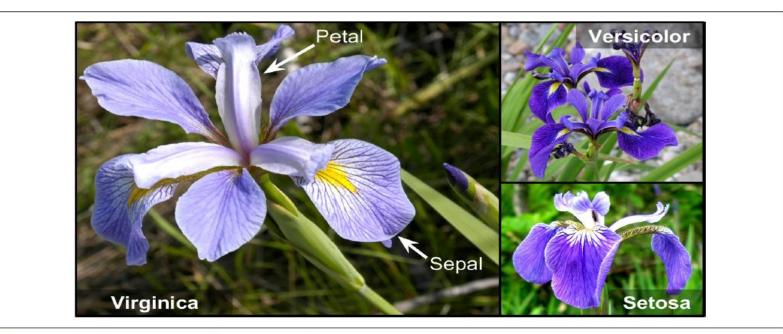


Figure 4-22. Flowers of three iris plant species¹⁴

Types of SVM classification

- Linear SVM: straight line
 - Choose between approaches: hard-margin or soft margin
 - Use LinearSVC, SVC (kernel = linear) or SGDClassifier class
- Non-linear: curve
 - Choose between techniques polynomial kernel or similarity features
 - Use SVC (kernel = poly) or SVC (kernel = rbf)
- In practise use Claudius rule: simple ones first
 - LinearSVC
 - SVC only for polynomial, max degree 3 to avoid overfitting
 - SGD (only if out of core problems)
 - ANN (Artificial Neural Network) good alternative for complex data sets

Choose and build classifier(s)

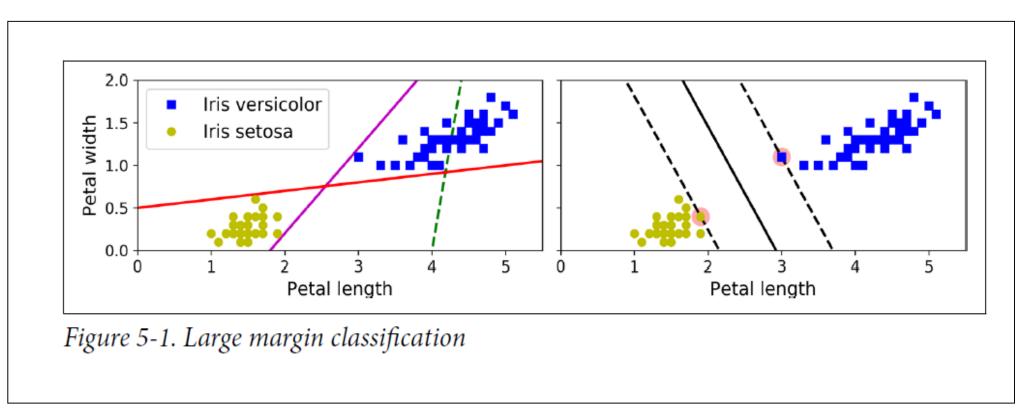
- Find margin interval (street edge) defined by support vectors
- Make a choice on the decision boundaries (Linear/curved)
- Apply scaling
- The aim is to find variables and values that split the data into groups
 - Maximizing the margin interval
- The decision boundaries is based on petal length and petal width
- Outcome is Iris Virginica OR Iris Setosa, BUT NOT probability
- Using several training algorithm to see which one is best...

Lets see how it looks on next slide!

BUT First watch an easy video introduction <u>SVM Introduction (20 minutes)</u>

Hard margin classification

- SVM decision boundary on Iris data set
- Either it is in or it is out



SVM Scaling

• Utilize scaling to solve the problem of sensitivity to feature scales

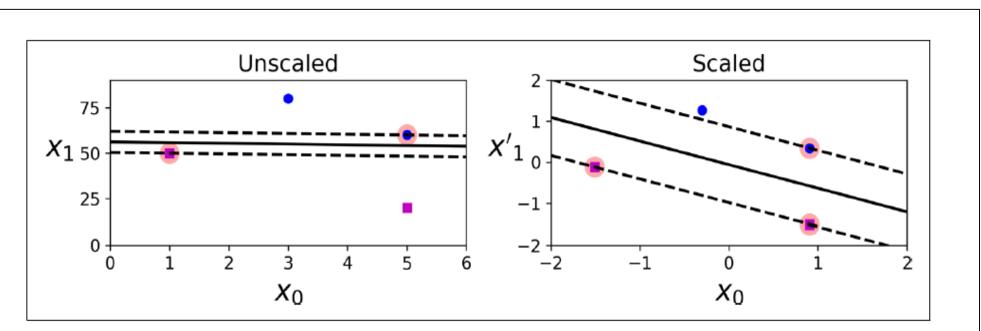


Figure 5-2. Sensitivity to feature scales

Code for Iris data set

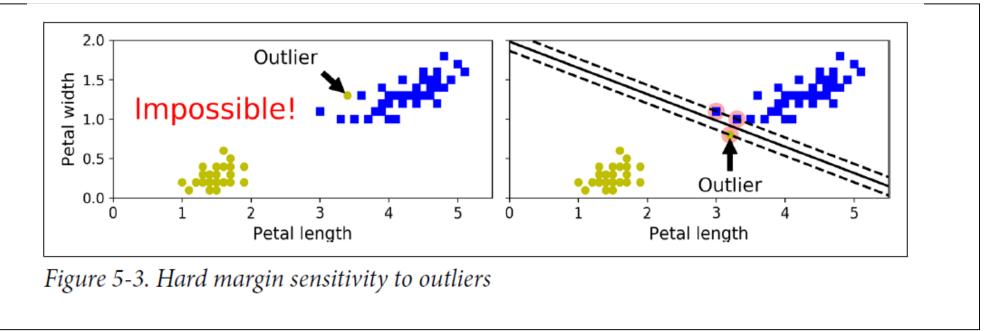
- Import libraries
- Set up a pipeline with scaling

```
iris = datasets.load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
y = (iris["target"] == 2).astype(np.float64) # Iris virginica
svm_clf = Pipeline([
    ("scaler", StandardScaler()),
    ("linear_svc", LinearSVC(C=1, loss="hinge", random_state=42)),
])
svm_clf.fit(X, y)
svm_clf.predict([[5, 2]]) from sklearn.datasets
```

What about probability. NO! Cannot predict probability

SVM Outliers problems

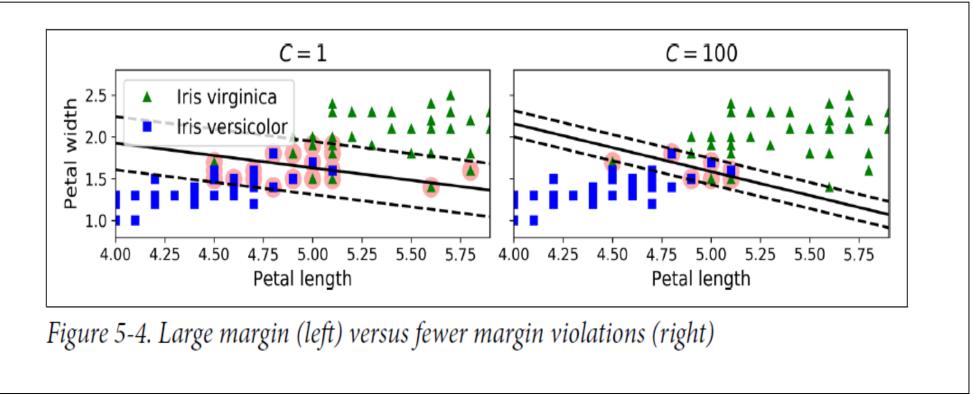
- Hard margin is sensitive to outliners
- And some times impossible to use



• We are lucky: Soft margin is the answer!

Soft margin

- Allows margin violations
- C=1: Large margin many violations; C=100 Small margin but few violations



• But there are better solutions, but more time greedy Nonlinear SVM Classification

Nonlinear SVM classification: polynomial features

- Add extra polynomials e.g. up to degree 3 for each feature: $X_2 = (X_1)^2$ and $X_3 = (X_1)^3$ to the data set.
- Remember linear regression: $h(X) = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_n X_n$ $\theta_0 + \theta_1 (X_1)^1 + \theta_2 (X_1)^2 + \theta_3 (X_1)^3$
- Making the data set linear separable as shown for degree 2 below

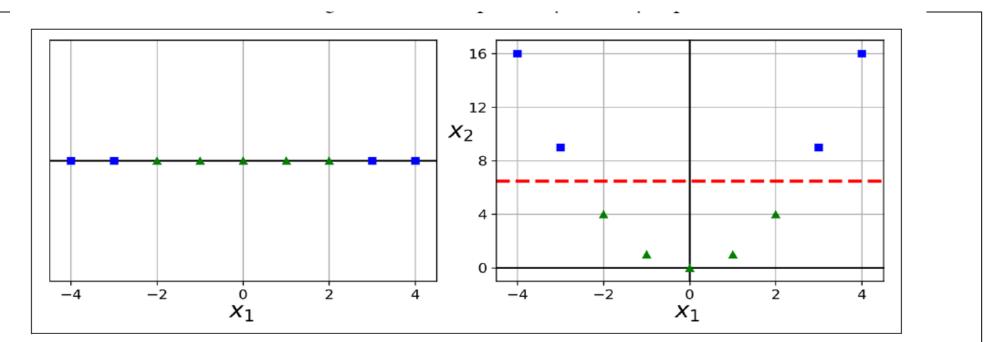


Figure 5-5. Adding features to make a dataset linearly separable

Code for Moon data set

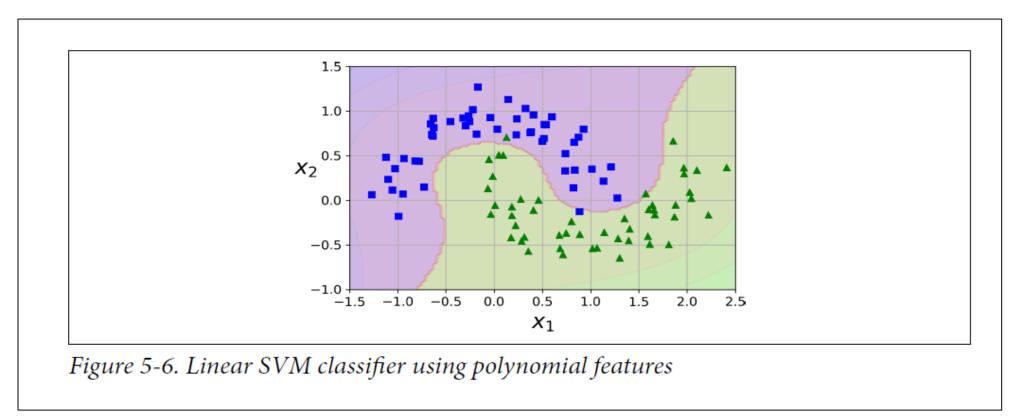
- Import libraries
- Set up a pipeline with polynomial features and scaling

```
import make_moons
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
polynomial_svm_clf = Pipeline([
    ("poly_features", PolynomialFeatures(degree=3)),
    ("scaler", StandardScaler()),
    ("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42))
])
polynomial_svm_clf.fit(X, y)
```

What about probability. NO! Cannot predict probability

Nonlinear SVM with polynomial features

• Now we get soft boundary lines



• But there are problems. Oh no not that again⊗

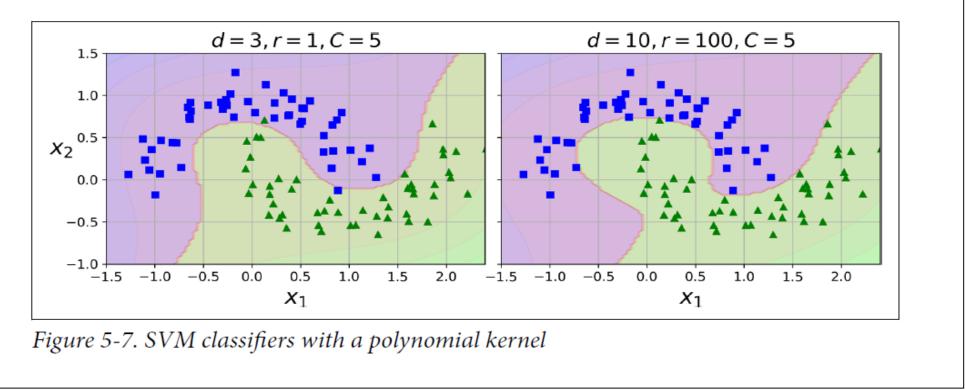
Problems with Polynomial features

- Low degree cannot handle complex data set
- High degree have too many features => very slow

- But we are lucky again.
- The kernel trick
 - Solution A: Polynomial kernel
 - Solution B: Similarities features

Nonlinear SVM with polynomial kernel

- Soft boundary lines
- Overfitting is an issue



• No more problems. But the math behind is complicated.

Computational complexity

- Big O notation O(m x n)
- m: number of instances
- n: number of features

Class	Time complexity	Out-of-core support	Scaling required	Kernel trick
LinearSVC	$O(m \times n)$	No	Yes	No
SGDClassifier	$O(m \times n)$	Yes	Yes	No
SVC	$O(m^2 \times n)$ to $O(m^3 \times n)$	No	Yes	Yes

Table 5-1. Comparison of Scikit-Learn classes for SVM classification

- Example: m = 10.000 n= 5
- LinearSVC: 50.000 0.1 second
- SVC(10.000 x 10.000 x 5 = 500.000.000, 1.000 seconds !!

Types of SVM regression

- Idea: Largest possible street with many instances on the street and few instances off the street/margins
- (a crowded biker' lane)
- Linear SVM: straight line
 - Choose between approaches: hard-margin or soft margin
 - Use LinearSVR similar to LinearSVC
- Non-linear: curve
 - Use SVR, SVR (kernel = poly) similar to SVC (kernel = poly)

Under the hood or Assignments

- Under the hood or What goes on behind the stage: Complicated mathematics !
- I will skip it.
- It is time for discussion and solving a few assignments in groups
 - Problems problems enjoy!
 - SVM Iris Exercise

